A
Short Account of the History of Structural Dynamics between the Nineteenth and
Twentieth Centuries
1Massimo Corradi
1Dipartimento di Scienze per l’Architettura, Scuola Politecnica - Genova, corradi@arch.unige.it
The
Foundation of Dynamics: a brief introduction
What a difficult task it is to give a short
account of the history of the structural dynamics! It’s a complex and
diversified history, coming from different sources and with influences from
interstitial (or interface) areas, moving between different branches of
engineering, crossing them transversally and deriving from each a new impulse
for development. Moreover, dynamics is a field emerging somewhere between
mathematics, physics and mechanics. Also, dynamics has evolved into more
disciplines: applied mathematics, theoretical mechanics, and experimental
physics. The oldest of these disciplines is applied dynamics, which originally
was regarded as a branch of natural philosophy or physics related to natural
phenomena, and its origin goes back to Galileo Galilei (1564-1642), at least.
Nevertheless, dynamics is very old discipline. The history of dynamics started
with the studies of Aristotle (384-322 B.C.). Aristotle’s Physics was the first
step on a long journey. Aristotle thought deeply about two fundamental
questions debated by Parmenides (Fifth century B.C.) and Heracleitus (c.550-480
B.C.), on the reality and mechanisms of dynamics. What is change? Is it real?
Why do things change? Aristotle realised that we understand change through
duality. He modelled physical change with ‘matter’ and ‘form’. Going beyond
physics, he modelled metaphysical change with ‘potency’ and ‘act’. Zeno of Elea
(490-430 B.C.) developed many arguments showing that motion is impossible.
Zeno’s paradoxes support the position of Parmenides, who felt that reality was
eternal and motion an illusion. (The invention of the calculus by Newton and
Leibniz would make the logical treatment of motion, continuity and infinity
live issues in mathematics).
Then, dynamics resumed its journey with
Aristarchus of Samos (310-230 B.C.), who proposed the Heliocentric theory, Hipparchus
of Rhodes (190-120 B.C.), who measured the angular height of the star Alpha
Virgins above the ecliptic and compared his measures with Babylonian
observations. Hipparchus deduced that the Earth’s axis precede at 47
arc-seconds per year and also made detailed observations of the moon, and
estimated the earth-moon distance with a good accuracy. Ptolomey
(c.100-178A.D.) knocks heliocentricity on the head because it violates
Aristotle’s ideas. He then wrote a detailed mathematical theory of the motion
of the sun, moon, and planets. In the Middle Ages Thomas Aquinas (1222-1274)
combined Aristotelian metaphysics with Christian belief to produce the most
influential work on the nature of God even written, his Summa Theologiae
(Aquinas 1509). In the Renaissance, Galileo was one of the first to deal
thoroughly with the concept of acceleration and he founded dynamics as a branch
of natural philosophy. The close interplay of theory and experiment,
characteristic of this subject, was founded by Italian scientists. Galileo said
mathematics is the means to decipher the book of nature. Mathematics seeks to
discern the outlines of all possible abstract structure. This pure mathematics
may be applied to every sort of concrete problem. Consequently the history of
mathematics is as old as the history of philosophy, and mathematical
discoveries have often influenced philosophy. But,
the main kinematical properties of uniformly
accelerated motions, still attributed to Galileo by the physics texts, were
discovered and proved by scholars of Merton College – William Heytesbury,
Richard Swineshead, and John of Dumbleton – between 1328 and 1350. Their work
distinguished kinematics, the geometry of motion, from dynamics, the theory of
the causes of motion
(Truesdell 1968, p.
30)
Figure 1. “What objects for the History of
Structural Dynamics?” (by Edoardo Benvenuto)
Tycho Brahe (1546-1601) applied dynamics to the
study of celestial mechanics. Johannes Kepler (1629-1695) was the outstanding
and original exponent of applied dynamics. Kepler made use of extensive
interaction between theory and observation to understand the planetary motion.
Christiaan Huygens (1629-1695) in 1656 patented the first pendulum clock and
applied it to longitude determination. Isaac Newton (1642-1727) founded
mathematical dynamics, as well as the calculus on which it is based.
Applications and experiments were basic to his ideas, which were dominated by
the doctrine of determinism, but his methods were geometrical. The concept of
calculus, mathematical dynamics, and their implications for natural philosophy,
occurred independently to Gottfried Wilhelm Leibniz (1646-1716), but his
methods were more symbolic than geometrical. John Harrison (1693-1776) made
important contributions to the mécanique céleste and his work fixed the new
topic of dynamics. Otherwise, mathematical dynamics began with Newton and has
become a large and active branch of pure mathematics.
In the eighteenth century Leonhard Euler
(1707-1783) developed the technique of analysis that were to dominate
mathematical dynamics throughout its classical period. Louis Lagrange
(1736-1813), developed the analytical method to extremes, and boasted that his
definitive text on the subject contained not a single illustration, Daniel
Bernoulli (1700-1782) applied dynamics to Hydrodynamics, established the most
important steps of dynamics. Over a period of 41 years, 1766-1817, Pierre Simon
Laplace (1749-1827) took important steps and put the (gamma-1)/gamma into the
speed of sound. His career peaked in 1812 when his work on probability was
published. In 1762, Lagrange writes his “Method of Variations” and in 1766 he
won prizes for his work on Moon, Jupiter, 3-body problem and comets. He also
wrote his Méchanique Analytique, which contained no diagrams and in 1787, the
publication of Mécanique Céleste commences.
Finally, in the nineteenth century Henry
Poincaré (1854-1912) became the first to consider the possibility of chaos in a
deterministic system, in his work on planetary orbits. Little interest was
shown in this work until the modern study of chaotic dynamics began in 1963.
But, since Poincaré the newer methods of topology and geometry have dominated
the field of theoretical dynamics. Marius Sophus Lie (1842-1899), combining the
ideas of symmetry and dynamics built the foundations for a far-reaching
extension of dynamics, the theory of groups of transformations. John William
Strutt, Baron Rayleigh (1842–1919) dwelled at length on acoustical physics. In
this work he revived the experimental tradition of Galileo in dynamics, laying
the foundation for the theory of non-linear oscillations. His text on
acoustics, published in 1877, remains to this day the best account of this
subject.
Structural
Dynamics: some sketches
Over the last two centuries, the growth of
structural dynamics was stimulated by theoretical investigations and
computational methods arising from other contexts: from the theory of sound to
the mécanique céleste; from the théorie de la chaleur to electromagnetism, and
from fluid dynamics to atomic physics.
In the case of dynamic effects on structures, a strenuous and in-depth
discussion came in several different fields, in mechanical engineering (design
and construction of machineries, control of vibration, etc.), in naval,
aeronautics and also in civil engineering. For example, the problems of bridges
under the action of heavy loads moving at speed, industrial buildings subjected
to dynamic actions, constructions in earthquake zones, wind effects on tall
buildings and particular structures, etc.
From the first half of the twentieth century,
the dynamic analysis of structures gradually began to be articulated and
compounded, taking shape as a separate discipline arising from the theory of
structures and the strength of materials. However, its most perspicuous
applications continued to be improved by groups of scientists, who were
directly involved with specific problems of concern to other technological
sectors.
A further remark concerns the mathematical
language adopted by the discipline of structural dynamics, which over time gave
consistency and consonance to its theoretical shape and made it possible to
simplify and to improve its demonstrative arguments and methods of calculation.
Sometimes a simple change of notation was sufficient to give a new impulse to
mathematical interpretations about results which had been known ever since
Euler, Johann Bernoulli (1667–1748), Jean-Baptiste Le Rond d’Alembert
(1717–1783) and Lagrange, but that were still not recognized for their full
significance. As Laplace said: “A well
devised notation is sometimes half the battle in mathematics.” From a historical perspective, especially in
our century, the growth of structural dynamics is an important example of how
some of the most important results were produced by the development of
mathematics in the continuous transformation of its language and, even more so,
in the evolution of its ideas.
Among the promoters and contributors to
structural dynamics, we cannot count just physicists and engineers, but also
mathematicians devoted to theoretical studies: from Hermann Grassmann
(1809-1877) to Arthur Cayley (1821-1895), from Georg Bernhard Riemann
(1826-1866) to David Hilbert (1862-1943) and then to John von Neumann
(1903-1957).
The linguistic metamorphosis within structural
dynamics over the last fifty years has been so deep that, if a student today
takes a recently published textbook, he is likely to believe that it would not
be possible to write the fundamental equations for structural systems and to
look for their solution, without the many elements of contemporary mathematics,
which have been developed in the twentieth century, such as abstract algebra,
linear spaces, spectral theory of operators, functional analysis, etc. Studying history we notice that these events
ordered how the solution of equations - originally written in different form -
was arrived at without laborious calcula, when, in the great book of the
history of mathematics, the required chapters still had to be written.
It was thanks to this earlier, practical work,
concerning actual problems that the discovery of new fields of research - which
mark contemporary mathematics - was possible.
In other words, the mathematical formalization of structural methods
grew, as Georg Wilhelm Friedrich Hegel (1770-1788) observed about philosophy,
like Minerva’s noctule, “it flied off towards the evening”. Karl Friedrich Gauss (1777-1855) made a
similar observation when writing a letter to Heinrich Christian Schumacher
(1780-1850) concerning his Barycentrischer Calcul, in 1843:
It’s widely held that by these new methods, you
do not obtain anything that you could not obtain without them. But, thanks to
these procedures, [...] numberless problems that would have remained isolated
and would have required new efforts as they turn up are now arranged in an
organic set.
(Gauss 1975)
And again, in a letter to Schumacher:
It is the character of modern mathematics that
through our language of signs and nomenclature, we possess a lever by which the
most complicated arguments can be reduced to a particular mechanism. Science
has thus gained an almost infinite richness, beauty, and solidity. But in the
day-to-day use of this tool, science has lost almost as much as it has gained.
How often is that lever applied only mechanically, although the authorization
for it generally implies certain tacit hypotheses. I demand that in every use
of a system of notation and in every use of a particular concept, each user be
conscious of the original conditions and never regard as his property any
products of the mechanism beyond its clear authorization.
(Gauss 1975)
This paper surveys the evolution of structural
dynamics from the second half of the nineteenth century to the first decades of
the twentieth century in the light all of the foregoing statements,
concentrating on those problems that benefited from interdisciplinary contact
and which stimulated theoretical discussion.
Historical
notes: the case of Modal Analysis
In order to offer a clear example of this
interaction between the evolution of mathematical languages and structural
dynamics, we shall focus our attention on the modal analysis of mechanical
vibrations. If a student today takes a recently published textbook on this
subject, he is likely to believe that it would not be possible to write the
fundamental equations for the small oscillations of a N - degrees of freedom
system and to look for their solution without the many elements of contemporary
mathematics, which have been developed in the twentieth century as abstract
algebraic N - dimensional spaces, vector analyses, the spectral theory of
operators, functional analysis, etc.
As noted in previously, the solutions to these
equations were attained by means of ingenious and elementary instruments, or,
by peculiar expedients and laborious calcula.
We shall start from some preliminary studies
about De pendulis multifilibus, published in Johann Bernoulli’s Opera omnia
(1742), and dwell to some extent on the great solution given by Lagrange in
Miscellanea Societatis Taurinensis (1759-1760), and in his Méchanique
analytique (1788).
The contributions offered by Claude-Louis
Navier (1785-1836), Siméon-Dénis Poisson (1781-1840), Giovanni Antonio Amadeo
Plana (1781–1865) and other minor authors will be examined and related to
contemporary mathematical research (Fourier’s series, 1822; Dirichlet’s memoir,
1837). An almost unknown, but fundamental essay by Luigi Filippo Menabrea,
Marchese di Valdora (1809-1896) will be presented in order to show that the
main features of the modal analysis have been completely established by means
of very elementary methods. Then Rayleigh’s great paper of 1873 will be
discussed. At the same time, a short outline of the mathematical revolution
caused by the pioneering ideas of William Rowan Hamilton (1805-1865) (Hamilton
1843), Arthur Cayley (Caley 1843), Hermann Grassmann (Grassmann 1844), Josiah
Willard Gibbs (1839-1903) (Gibbs 1881; Wilson 1947), Oliver Heaviside
(1850-1925) (Heaviside 1883), August Föppl (1854-1924) (Föppl 1897), will help
us understand the formal developments and improvements of modal analysis at the
end of the nineteenth century and the first decades of the twentieth century.
Of great importance was: the contributions of a great scholar such as Alexandre
Mikaïlovitch Liapounov (1857-1918), another pioneer of geometrical methods in
mathematical dynamics, especially his basic ideas on the development of
stability problems; George Duffing (1861-1944), who studied mechanical devices
in order to discover geometrical properties of dynamical systems with the
theory of oscillations as his explicit goal; Jacques Hadamard (1865-1963)
(Hadamard 1897), Tullio Levi-Civita (1873-1941), where mathematics lent to
mechanics, and so on until the present routine formulation. Regarding this
topic see also George David Birkhoff (1884-1944), Balthasar van der Pol
(1889-1959), Nicholas Rashevsky (1899-1972), Chihiro Hayashi (1911-1986), etc.
A brief history of these subjects, indicating
the most important contributors, includes: Louis Lagrange’s analysis of the
problems of small oscillations of discrete (elastic) systems, in a general case
with general methods for N degrees of freedom. Then Navier, Poisson, Plana, etc
improved Lagrange’s solution. Menabrea’s contribution, Rayleigh’s fundamental
memoir of (1873) and the treatise of Edward John Routh (1831-1907) (Routh 1877,
1898, 1920) were the basis for further development in the nineteenth century.
Rayleigh’s Theory of Sound (1877) was the work,
which “heralded the modern era of dynamics of elastic systems including,
especially, engineering structures” (Charlton 1982, p. 163). 1897 was a crucial year: A. Kneser, A. M.
Liapounov, J. Hadamard, T. Levi-Civita’s contribution from 1896 to 1929, and
Liapounov’s essay of 1907 on the ‘Problème général de la stabilité du
mouvement’ opened a new field for mathematical studies applied to structural
mechanics and dynamics. New methods for
the calculation of eigen-values and eigen-vectors, with application to
structural dynamics, were developed in the first years of the twentieth
century. The German school (E. Pohlhausen, Th. Poschl, E. Rausch, A. Tränkle,
S. Gradstein, F.W. Waltking, K. Hohenmeser, R. Grammel, E. Fliegel, F.
Reinitzhuber) produced in a few years (1921-1937) produced several interesting
contributions to the development of mathematical problems.The problem related
to the numerous degrees of freedom was resolved introducing integral equations
(Vivanti 1916). The contributions of mathematicians, physicians & engineers
like V. Volterra, D. Hilbert, H. Schmidt, Fr. Tricomi, A. Strassner, L.
Collatz, G. Krall gave a great impulse to these studies and to the applications
of structural mechanics (van den Dungen 1928).
The
Applications of Structural Dynamics in Civil Engineering
The analysis of trusses and frames was examined
and resolved by H. Reissner’s fundamental papers on ‘Schwingungsaufgaben aus
der Theorie der Fachwerke’ published in Zeitschrift für Bauwesen in 1899 and
1903. F. Bleich gave more contributions in his treatise to study iron bridges
(Bleich 1924, pp. 41-77). Then F. Jodi, G. Krall, A. Galli applied this new
formulation to several practical problems. Guido Alfani (1876-1940) produced
important studies on the mechanical vibrations of buildings (Alfani 1909,
1910). A. Sommerfeld, A. Hertwig and H. Lorenz studied the problem of dynamic
action on elastic soils (Love 1911, Krall 1940).
The applications related to the vibrations of machinery,
engines, cars, and other similar topics were developed at the start of the
twentieth century. I. Radinger, A. Stodola, I. Heun, H. Lorentz, W. Hort, R. v.
Mises, and many others scientists have all solved practical problems in this
respect. In these topics, for instance, the application of structural dynamics
to electric locomotives were improved by E. Meissner, K.E. Muller, A. C.
Couwenhoven, and A. Wichert, while dynamic vibration absorbers were studied by
A. Föppl, and K. Klotter. Finally, the critical speed of a rotating shaft was
resolved by A. Stodola, A. Föppl and others minor scholars (Timoshenko 1927).
The applications in the field of hydrodynamics (Hadamard 1903; Cisotti 1921;
Lamb 1924) and ship dynamics stemmed from the studies of W. Froude, A. Kriloff,
H. Frahm, and J. Horn (Krall 1940).
Special
Topics
Quasi-harmonic vibrations is contained in
Floquet’s theory (1883), while mathematical implementations and applications of
this theory was developed by F. Klein, G. Hamel, O. Haupt, and others. J. Horn,
G. Duffing, and G. Hamel studied non-linear oscillations of 1 degree of
freedom. Vito Volterra (1860-1940), between 1912 and 1924, analysed the problem
of hereditary actions (Volterra 1924). He obtained a mathematical solution with
a continuo care during two decades. Finally, the theory of adiabatic invariance
is the result of the studies of P. Eherenfest, J. M. Burgers, E. Fermi, T.
Levi-Civita, and its application to problems of structural dynamics due to
Giulio Krall (Krall 1940).
The
Vibrations of Continuous Systems: Ropes, Bars, Beams and Plates
The early theories of the eighteenth century
are developed in the nineteenth century by, Navier (1823), Cauchy (1827) and
Poisson (1833), to be completed by Clebsch (1862). The analysis of elastic bars under longitudinal
impact is in reference to Young’s theorems (Young 1807, pp. 46-50), Navier and
Babinet’s early studies (1823 and 1829), Phillips’ memoir (1864), and de
Saint-Venant’s first fundamental contributions (1867-1868). A full contemporary
clarification of the question was gave by J.V. Boussinesq (Boussinesq 1882) and
by the de Saint-Venant’s final review in his edition of Clebsch’s treatise
(Clebsch 1883). The problem of elastic
beams when subjected to lateral impact refers to early studies of Eaton Hodgkinson
(1789-1861), published in 1834-1836 in the British Association Report
(Hodgkinson 1846), leading to the “Report of the Commissioners appointed to
inquire into the application of iron to railway structures. On this subject see
also “Appendix A” (1849) of the cited Report and the two important note of
Cox’s (Cox 1848, 1849).
De Saint-Venant formulated a new approach in
the middle of the nineteenth century (1854, 1857, 1865). Fundamental is his
Note to § 61 of Clebsch’s treatise (Clebsch 1883). J. V. Boussinesq gave a
solution in finite terms (Boussinesq 1885) and Alfred-Aimé Flamant (1839-1914)
made some important remarks (Flamant 1886). Further interesting contributions
are the book of Timoshenko (1932, pp. 41-47), and G. Krall (Krall 1940).
The Willis Problem or the “resilience” of a
beam subject to a travelling load, born out of a question submitted to the
above-mentioned Commission (1847). Its “Report-Appendix B” (Willis et al.)
refers to Willis’ experiments at Portsmouth and at Cambridge. George Gabriel
Stokes (1819-1903) in 1849 gave an implementation of the solution, while a new
approach of the same problem was formulated some years later by E. Phillips
(1821-1889), then for the problem of the dynamical action of a moving load on a
bridge (Phillips 1855). Moreover the latter also took up the forced
longitudinal and lateral vibration of bars and gave solutions to such problems
as that of the longitudinal vibration of a bar, one end of which is subjected
to the action of a periodic force (Phillips 1864). The last important
improvements of Phillips approach are de Saint-Venant’s contribution of 1883
(de Saint-Venant 1883), the Boussinesq’s solution (Boussinesq 1883) and the
Resal’s approach (Résal 1882). J. Melan, and H. Zimmermann later published
further important contributions. Then, A. Kriloff defined an alternative
approach. The debate continues with the contributions of F. Bleich, W. Prager,
S. Timoshenko, and G. Krall (Krall 1940).
The most fundamental theory of transverse
vibrations of a rod, with variable cross-section, started with Kirchhoff’s
basic memoir (Kirchhoff 1897). Some application of variations methods to this
problem was given by L. Gümbel, J. Morrow; with reference to ship dynamics, by
S. D. Taylor, O. Berling, A. Kriloff & K. E. Muller, J. J. Koch; with
reference to machineries and engines by O. Schlick, A. Stodola, E. Schwerin,
and many others authors (Stodola 1924).
Particular structures such as frames,
continuous beams, rings, etc. and their problems were analysed by several
authors: W. Kaufmann, K. Klotter, W. Prager, S. Timoshenko, K. Federhofer, W.
Mudrak, A. Galli, G. Krall (Timoshenko 1932). Moreover, H. G. Küssner studied
the effects of an axial load on transverse vibrations, and then L. Pochhammer
resolved the problem of longitudinal and torsion vibrations. Finally, studies on plates was developed by
S. Germain, G. R. Kirchhoff, F. Bernard, J. W. Rayleigh, H. Lamb & R. W.
Southwell, K. Klotter, H. Reissner, H. Schmidt, R. Grammel, etc. These studies
opened a new trend in structural analysis of plates and shells under dynamics
loads (Love 1892-93, Timoshenko 1953, Timoshenko 1959).
Final
Remarks
This short account on the history of structural
dynamics is obviously not complete, and it may appear as simply a listing of
problems and authors. This is due to the large number of topics relevant to the
subject, the numerous studies, problems, and application of case studies
conducted over time. The complexity of these issues within a single aspect of
mechanics, such as structural applied mechanics, stimulated many scientists to
work and produce papers in a large number of mathematical domains. Therefore,
it was not the ambition of this paper to cover all subject matter related to
the history of dynamics, but only to offer the reader a first step that would
introduce him to the interesting and complex matter of the history of mechanics
and applied mechanics in the field of construction (Truesdell 1968).
Acknowledgments
This paper is dedicated to the memory of
Edoardo Benvenuto (1940-1998). His teaching is ever-present in my work.
List
of References
- Alembert, J. Le Rond d’ 1744. Traité de l’Équilibre et du Mouvement des Fluides. Pour servir de suite
au Traité de Dynamique. Paris: David.
- Alembert, J. Le Rond d’ 1758. Traité de dynamique, dans lequel les loix de l’équilibre & du
mouvement des corps sont réduits au plus petit nombre possible & démontrées
d’une manière nouvelle, & où l’on donne un principe général pour trouver le
mouvement de plusieurs corps qui agissent les uns sur les autres d’une manière
quelconque. Par M. D’Alembert. Paris: David.
- Alfani, G. 1909. I terremoti e le case: appunti popolari di
sismologia. Firenze: Alfani e Venturi.
- Alfani, G. 1910. Alcuni studi sulle vibrazioni meccaniche dei
fabbricati. Firenze: Alfani e Venturi.
- Appell, P. É. 1904-1919. Traité de mécanique rationnelle. Paris: Gauthier-Villars.
- Aquinas (Aquinayis), T. 1509. Prima (et Secunda) Secunde (Summae) Sancti Thomae Aquinatis ordinis
praedicatorum una cum annotationibus cotationibusque nuper per R. P. fratrem
Matheum Sicculum eiusdem ordinis sancte theologiae magistrum additis.
Venetiis: impressa per Philippum Mantuanum expensis domini giuntini de Giunta
Florentini.
- Babinet, J. 1829. Sur
les Couleurs des réseaux, par M. Babinet, Lu à la Société philomatique, le 8 décembre
1827. Paris: imprimerie de C. Thuau (see also: Babinet, J. 1855-68. Etudes et lectures sur les sciences
d’observation et leurs applications pratiques. Paris: Mallet-Bachelier).
- Béghin, H. 1921. Statique
et dynamique. Paris: A. Colin.
- Bernard, F. 1860. “Mémoire sur les vibrations des
membranes élastiques”, Comptes Rendus,
vol. 51, pp. 322-325.
- Bernoulli, Daniel 1738. Hidrodinamica, sive de Viribus et Motibus Fluidorum commentarii ...,
Argentorati: Johannis Reinholdi Dulseckeri.
- Bernoulli Johann 1742. Opera omnia, tam antea sparsim edita, quam hactenus inedita ... quibus
continentur ea, quae ab A. 1690 usque ad A. 1727 prodierunt. Accedunt Lectiones
Mathematicae de Calculo Integralium atque Anedokta. Vol. I. Lausannae &
Genevae (Genève et Lausanne): Bousquet.
- Bleich, F. 1924. Theorie
und Berechnung der eisernen Brücken. Berlin: J. Springer.
- Born, M. 1954. Dynamical
theory of crystal lattices. Oxford: Clarendon Press.
- Boussinesq, J.V. 1882. “Sur la détermination de l’épaisseur
minimum que doit avoir un mur vertical, d’une hauteur et d’une densité données,
pour contenir un massif terreux, sans cohésion, dont la surface supérieure est
horizontale”, Annales des Ponts et Chaussées,
6ème série, I sem., vol. 3, pp. 625-643.
- Boussinesq, J. V. 1883. “Du choc longitudinal d’une verre
prismatique, fixée à un bout et heurtée à l’autre” Comptes Rendus des Séances de l’Académie des Sciences, vol. 97, pp.
154-157.
- Boussinesq, J.V. 1885. Applications des potentiels à l’étude de l’équilibre et du mouvement
des solides élastiques. Paris: Gauthier-Villars.
- Burali-Forti, C.
and Boggio, T. 1921. Meccanica razionale.
Torino-Genova: S. Lattes & Co.
- Burgatti, P.
1921. Lezioni di Meccanica razionale.
Bologna: Zanichelli.
- Cauchy, A.-L. 1827a. “Recherches sur l’équilibre et le
mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques”,
Exercices de Mathématiques, vol. 2,
pp. 42-59.
- Cauchy, A.-L. 1827b. “Sur la condensation et la
dilatation des corps solides Exercices de
Mathématiques, vol. 2 , pp. 60-69.
- Cauchy, A.-L. 1827c. “Sur les relations qui existent,
dans l’état d’équilibre d’un corps solide ou fluide, entre les pressions ou
tensions et les forces accélératrices”, Exercices
de Mathématiques, vol. 2, pp. 108-111.
- Cayley, A. 1843. “On the Intersection of Curves”, Cambridge Mathematical Journal, vol. 3,
pp. 211-213.
- Cayley, A. 1843. “On the Motion of Rotation of a Solid
Body”, Cambridge Mathematical Journal,
vol. 3, pp. 264-267.
- Cayley, A. 1895. An
elementary treatise on elliptic functions. London: George Bell and Sons.
- Charlton, T.M. 1982. A history of the theory of structures in the nineteenth century.
Cambridge: University Press.
- Cisotti, U. 1921.
Idromeccanica piana. Bologna:
Zanichelli.
- Clebsch, A. 1862. Theorie
der Elastizität Fester Körper. Leipzig: B. G. Teubner.
- Colonnetti, G.
1929. Principii di dinamica. Seconda
edizione riveduta ed accresciuta. Torino: U.T.E.T.
- Courant, R. and Hilbert, D. 1924. Methoden der Mathematischen Physik. Berlin: J. Springer.
- Cox, H. 1848. “The dynamical deflexion and strain of
railway girders”, Civil Engineer and
Architect’s Journal, vol. 11, pp. 258-264.
- Cox, H. 1849. “On impact on elastic beams”, Cambridge Philosophical Transaction, vol.
9, part. I, pp. 73-78.
- Dirichlet (Lejeune-) P. G. 1837. “Sur l’usage des intégrales
définies dans la sommation des séries finies ou infinies”, Crelle, Journal für die reine und angewandte Mathematik, vol. 17, s. 57-67, pp.
257-270.
- Dugas, R. 1950. Histoire
de la Mécanique. Neuchâtel: Ed. du Griffon.
- Duhem, P. 1903. L’évolution
de la mécanique. Paris: Joanin.
- Euler, L., 1736. Mechanica
sive Motus Scientia Analytice exposita ... . Petropoli: ex Typographia
Academiae Scientiarum.
- Flamant, A. 1886. Stabilité
des constructions, Résistance des matériaux. Paris: Baudry et Cie.
- Floquet, G. 1883. “Sur les équations différentielles linéaires
à coefficients périodiques”, Annales de
l’École Normale Supérieure, 2éme série, vol. 12, pp. 44-88.
- Föppl, A. 1897. “Ziele und Methoden der technischen
Mechanik”, Deutsche Mathematiker
Vereinigung, vol. 6, pp. 99-110.
- Föppl, A. 1931. Grundzüge
der technischen Schwingungslehre. Berlin: J. Springer.
- Föppl, A. 1901-10. Vorlesungen
über technische Mechanik, von Dr. Aug. Föppl. Leipzig u. Berlin: B. G.
Teubner.
- Fourier, J. 1822. Théorie
analitique de la Chaleur. Paris: chez Firmin Didot, Père et Fils.
- Galilei, G. 1933.
Le opere di Galileo Galilei. Firenze:
Edizione Nazionale italiana.
- Gauss, C. F. 1975. Carl
Friedrich Gauss Werke, Briefwechsel mit H. C. Schumacher. Teil 1, Teil 2 und
Teil 3. Hildesheim, New York: Georg Olms Verlag.
- Geiger, J. 1927. Mechanische
Schwingungen und ihre Messung. Berlin: J. Springer.
- Gibbs, J. W. 1881. Vector
Analysis. Privately printed notes on vector analysis for his students.
- Grassmann, H. G. 1894. Die Ausdehnungslehre von 1844 und die geometrische Analyse, unter der
Mitwirkung von Eduard Studie herausgegeben von Friedrich Engel. Leipzig: B.
G. Teubner.
- Hadamard, J. 1897. “Sur certaines propriétés des
trajectoires en Dynamique”, Journal de
Mathématiques Pures Appliquées ou Journal de Liouville, V série, vol. 3,
fasc. 4, pp. 331-388.
- Hadamard, J. 1903. Leçons
sur la propagations des ondes et les équations de l’Hydrodynamique. Paris:
Hermann.
- Hamilton, W.R. 1843. “On a new Species of Imaginary
Quantities connected with a theory of Quaternions”, Proceedings of the Royal Irish Academy, vol. 2, pp. 424-434.
- Heaviside, O. 1894. Electromagnetic theory. By Oliver Heaviside. London: “The
Electrician” printing and publishing company.
- Hodgkinson, E. 1846. Experimental Researches on the Strength and Other Properties of Cast
Iron. London: John Weale.
- Hort, W. 1922. Technische
Schwingungslehre. Berlin: J. Springer.
- Huygens, C. 1673. Horologium
Oscillatorium. Sive de Motu Pendulorum ad Horologia aptato Demonstrationes
Geometricae. Paris: F. Muguet.
- Kirchhoff, G. R. 1848. “Note relative à la théorie de l’équilibre
et du mouvement d’une plaque élastique”, Comptes
Rendus, vol. 27, pp. 394-397.
- Kirchhoff, G. R. 1849. “Note sur les vibrations d’une
plaque circulaire”, Comptes Rendus
hebdomadaires des Séances de l’Académie des Sciences, vol. 29, pp. 753-756.
- Kirchhoff, G. R. 1897. Vorlesungen über mathematische Physik. Vol. I: Mechanik. Leipzig:
B.G. Teubner.
- Klein, F. 1928. Vorlesungen
über Elementarmathematik, vol. 3. Berlin: J. Springer.
- Krall, G. 1940. Meccanica tecnica delle vibrazioni.
Bologna: Zanichelli.
- Lagrange, L. 1760. “Nouvelles recherches sur la nature et
la propagation du son par M. De La Grange”, Miscellanea
Taurinensia ou Mélanges de Philosophie et de Mathématique de la Société Royale
de Turin Pour les Années 1760-1761, Tomus alter, 2nd part, pp.
11-172.
- Lagrange, L. 1788. Méchanique
analytique. Paris: la Veuve Desaint.
- Lamb, H. 1914. Dynamics.
Cambridge: University Press.
- Lamb, H. 1924. Hydrodynamics.
Cambridge: University Press.
- Lamb, H. 1925. The
dynamical theory of sound. London: Arnold & C.
- Laplace, P. S. 1799-1825. Traité de mécanique céleste, par P. S. Laplace. Paris: Duprat.
- Lecornu, L.-F.-A. 1918. Cours de mécanique. Paris: Gauthier-Villars.
- Lehr, E. 1930. Schwingungstechnik.
Berlin: J. Springer.
- Levi-Civita, T.
and Amaldi, U. 1922, 1927. Lezioni di
Meccanica razionale. Bologna: Zanichelli.
- Liapounov, A.M. 1892. Théorie
générale de la stabilité. Original Russian Dissertation.
- Liapounov, A.M. 1907. “Problème général de la stabilité
du mouvement”, Annales de la Faculté des
Sciences de Toulouse, 2éme série, vol. 9, pp. 203-474.
- Lord Kelvin and Tait, P.G. 1912. Treatise on natural philosophy. Cambridge: University Press.
- Lorenz, H. 1902. Technische
Mechanik, vol. 1-4. München u. Berlin: von R. Oldenburg.
- Love, A.E.H. 1911. Some
problems of Geodynamics. Cambridge: University Press.
- Love, A.E.H. 1921. Theoretical
Mechanics. Cambridge: University Press.
- Love, A.E.H. 1892-93. A treatise on the mathematical theory of elasticity. Cambridge:
University Press.
- Marcolongo, R.
1917-18. Meccanica razionale. Milano:
Hoepli.
- Navier, C. L. 1823. “Sur les lois de l’équilibre et du
mouvement des corps solides élastiques”, Bulletin
des Sciences de la Société Philomathique, Série 2, vol. 2, pp. 177-181 (see
also: Navier, C. L., 1827. “Sur les lois de l’équilibre et du mouvement des
corps solides élastiques”, Mémoire de
l’Académie Royale des Sciences, vol. 7, pp. 375-393).
- Newton, I. 1687. Philosophiae
naturalis principia mathematica. Londini: jussu Societatis regiae ac typis
Josephi Streater.
- Phillips, E. 1855. “Calcul de la résistance des poutres
droites telles que les ponts, les rails, etc., sous l’action d’une charge en
mouvement”, Annales des Mines, vol.
7, pp. 467-506.
- Phillips, E. 1864. “Solution de divers problèmes de Mécanique,
dans lesquels les conditions, sont des fonctions données du temps, et où l’on
tient compte de l’inertie de toutes les parties du système”, Journal de Mathématiques, vol. 9, pp.
25-83.
- Piola, G. 1845. “Intorno
alle equazioni fondamentali del movimento di corpi qualsivogliano, considerati
secondo la loro naturale forma e costituzione”, Memorie di Matematica e Fisica della Società Italiana residente in
Modena, vol. 24, pp. 1-186.
- Plana, G. 1815. “Mémoire sur les oscillations des lames élastiques”,
Journal de l'École Royale Polytechnique,
vol. 10, pp. 349-395.
- Poincaré, H. 1890. “Sur le problème des trois corps et
les équations de la Dynamique”, Mémoire couronné du prix de S.M. le roi Oscar
II de Suède. Acta Mathematica, vol.
13, pp. 1-270.
- Poincaré, H. 1905. Leçons
de mécanique céleste. Paris: Gauthier-Villars.
- Poisson, S. D., 1833. Traité de Mécanique. Paris: Bachelier.
- Rayleigh, J. W. Strutt Lord, 1873. “Some general
theorems relating to vibrations”, Proceedings
of the London Mathematical Society, vol. 4, pp. 357-368.
- Rayleigh, J. W. Strutt Lord, 1877-78. The theory of sound. London: Macmillan.
- Résal, H. 1882. Cours
de Mécanique. Rédaction des élèves. Paris: Ecole Polytechnique.
- Routh, E.J. 1877. A
treatise on the Stability of a Given State of Motion. London: Macmillan.
- Routh, E.J. 1898. A
Treatise on the Dynamics of a Particle. Cambridge: University Press.
- Routh, E.J. 1920. Treatise
of the Dynamics of as System of Rigid Bodies. London: Macmillan.
- Saint-Venant, A.-J.-C. Barré de 1854. “Solution du problème
du choc transversal et de la résistance vive des barres élastiques appuyées aux
extrémités”, L’Institut, vol. 22, pp.
61-63.
- Saint-Venant, A.-J.-C. Barré de 1857. “Mémoire sur
l’impulsion transversale et la résistance vive des barres élastiques appuyées
aux extrémités”, Comptes Rendus de l’Académie
des Sciences, vol. 45, II sem., pp. 204-208
- Saint-Venant, A.-J.-C. Barré de 1865a. “Complément au Mémoire
lu le 10 août 1857 sur l’impulsion transversale et la résistance vive des
barres, verges ou poutres élastiques” (Extrait), Comptes Rendus de l’Académie des Sciences, vol. 60, I sem., pp.
42-47; vol. 61, I sem., pp. 33-37; vol. 62, I sem., pp. 130-134.
- Saint-Venant, A.-J.-C. Barré de 1865b. “Théorème nouveau
de Mécanique, relatif aux forces vives vibratoires. Moyen pratique et élémentaire d’évaluer très approximativement,
dans le plus grand nombre des cas, la flexion ou l’extension d'un système élastiques,
due à un choc [Deuxième complément au Mémoire lu le 10 août 1857]”, Comptes Rendus de l’Académie des Sciences,
vol. 60, I sem., pp. 732-735.
- Saint-Venant, A.-J.-C. Barré de 1865c. “Troisième complément
au Mémoire lu le 10 août 1857 sur l'impulsion et la résistance vive des pièces élastiques,
et sur les forces vives dues aux mouvements vibratoires”, Comptes Rendus de l’Académie des Sciences, vol. 61, II sem., pp.
33-37.
- Saint-Venant, A.-J.-C. Barré de 1867a. “Sur le choc
longitudinal de deux barres parfaitement élastiques et sur la proportion de
leur force vive qui est perdue par la translation ultérieure”, Société Philomathique de Paris, n. 4,
pp. 92-95.
- Saint-Venant, A.-J.-C. Barré de 1867b. “Sur le choc
longitudinal de deux barres élastiques de grosseurs et matières semblables ou
différentes, et sur la proportion de leur force vive qui est perdue pour la
translation ultérieure; ... Et généralement sur le mouvement longitudinal d'un
système de deux ou plusieurs prismes élastiques”, Journal de Mathématiques pures et appliquées de Liouville, vol. 12,
pp. 237-376.
- Saint-Venant, A.-J.-C. Barré de 1867c. “Démonstration élémentaire:
(1°) de l’expression de la vitesse de propagation du son dans une barre élastique;
(2°) des formules nouvelles données, dans une communication précédente, pour le
choc longitudinal de deux barres, Comptes
Rendus de l’Académie des Sciences, vol. 64, I sem., pp. 1192-1195.
- Saint-Venant, A.-J.-C. Barré de 1868. “Choc longitudinal
de deux barres élastiques, dont l'une est extrêmement courte ou extrêmement
roide par rapport à l’autre”, Comptes
Rendus de l’Académie des Sciences, vol. 66, I sem., pp. 650-653.
- Saint-Venant, A.-J.-C. Barré de 1883a. “Résistance vive
ou dynamique des solides. Représentation graphique des lois du choc longitudinal,
subi à une de ses extrémités par une tige ou barre prismatique assujettie à
l'extrémité opposé, par MM. de Saint-Venant et Flamant”, Comptes Rendus de l’Académie des Sciences, vol. 97, II sem., pp.
127-133; pp. 214-222; pp. 281-290; pp. 444-447.
- Saint-Venant, A.-J.-C. Barré de 1883b. Détermination et
représentation graphique des lois du choc longitudinal d’une tige ou barre élastique
prismatique, par MM. de Saint-Venant et Flamant, Paris: Gauthier-Villars.
- Saint-Venant, A.-J.-C. Barré de 1883c. Théorie de l’élasticité des corps solides de
Clebsch, traduite par MM. Barré de Saint-Venant et Flamant , avec notes étendues
de M. de Saint-Venant. Paris: Dunod.
- Schneider, E. 1924. Mathematische Schwingungslehre.
Berlin: J. Springer.
- Stodola, A. 1924. Dampf-
und Gas-Turbinen. Berlin: J. Springer.
- Stokes, G. G. 1849. “On the dynamical theory of
diffraction”, Cambridge philosophical
Transactions, vol. 9, pp. 1-62; 243-328.
- Strassner, A. 1925. Neuere
Methoden zur Statik der Rahmentragwerke. Berlin: W. Ernst.
- Thomson, W. & Tait, P. G. 1867. Treatise on Natural Philosophy.
Cambridge: University Press.
- Timoshenko, S. 1927. Method of Analysis of Statical and Dynamical Stresses in Rails.
Zurich: Orell Füssli.
- Timoshenko, S. 1928. Vibration problems in engineering. New York: van Nostrand Co.
- Timoshenko, S. 1932. Schwingungsprobleme
der Technik. Berlin: Springer.
- Timoshenko, S. 1953. History of (the) Strength of Materials. New York: McGraw-Hill.
- Timoshenko, S. 1959. Theory of Plates and Shells. New York: McGraw-Hill.
- Todhunter, I. and Pearson, K., 1960. A History of the Theory of Elasticity.
New York: Dover Publications Inc.
- Truesdell, C. A. 1968. Essays in the History of Mechanics. Berlin-Heidelberg-New York:
Springer-Verlag.
- Van den Dungen, M.F.H. 1928. Les problèmes généraux de la technique des vibrations. Paris:
Gauthier-Villars.
- Vivanti, G. 1916.
Elementi della teoria delle equazioni
integrali lineari. Milano: U. Hoepli.
- Volterra, V.
1924. Saggi scientifici. Bologna:
Zanichelli.
- Wilson, E. B. 1947. The Early Work of Willard Gibbs in Applied Mechanics. A text Book for
the Use of Students of Mathematics and Physics and Founded upon the Lectures of
J. Willard Gibbs. New Haven: Yale University Press.
- Wittaker, E. T. 1917. Analytical Dynamics. Cambridge: University Press.
- Young, T. 1807. A
Course of Lectures on Natural Philosophy and the Mechanical Arts. London:
J. Johnson (London: Taylor and Walton, 1845).